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We present a parametrization of the chiral even generalized parton distributions, H, E, H̃, Ẽ, for
the quark, antiquark and gluon, in the perturbative QCD-parton framework. Parametric analytic
forms are given as a function of two equivalent sets of variables x, ξ, t (symmetric frame) and X, ζ, t
(asymmetric frame), at an initial scale, Q2

o. In the X > ζ region a convenient and flexible form

is obtained as the product of a Regge term ∝ X−α+α′t, describing the low X behavior, times a
spectator model-based functional form depending on various mass parameters; the behavior at X <
ζ, is determined using the generalized parton distributions symmetry and polynomiality properties.
The parameters are constrained using data on the flavor separated nucleon electromagnetic elastic
form factors, the axial and pseudoscalar nucleon form factors, and the parton distribution functions
from both the deep inelastic unpolarized and polarized nucleon structure functions. For the gluon
distributions we use, in particular, constraints provided by recent lattice QCD moments calculations.
The parametrization’s kinematical range of validity is: 0.0001 ≤ X ≤ 0.85, 0.01 ≤ ζ ≤ 0.85,
0 ≤ −t ≤ 1 GeV2, 2 ≤ Q2 ≤ 100 GeV2. With the simultaneous description of the quark, anti-quark
and gluon sectors, this parametrization represents a first tool enabling a global QCD analysis of
deeply virtual exclusive experiments.

I. INTRODUCTION

Deeply virtual exclusive photon and/or meson produc-
tion processes allow us to access Generalized Parton Dis-
tributions (GPDs) [1, 2], the universal quantities that
lie at the heart of all studies of the 3D structure of the
proton [3]. GPDs can also give access to the mechani-
cal properties of angular momentum [1, 4], pressure, and
shear forces [5–7] defining the internal structure and dy-
namics of hadrons. Analogous to the parton distribu-
tions functions (PDFs) obtained from inclusive deep in-
elastic scattering (DIS) processes, GPDs parametrize the
quark, antiquark and gluon correlation functions involv-
ing matrix elements between proton states of operators
at a light-like separation between the respective parton
fields.

An important difference with inclusive scattering is
that GPDs enter the cross section for deeply virtual
exclusive experiments such as Deeply Virtual Compton
Scattering (DVCS) [4], deeply virtual meson production
(DVMP) and related cross channel reactions, at the am-
plitude level, multiplied by the Wilson coefficient func-
tions and integrated over the longitudinal momentum
fraction, x. Quantum Chromodynamics (QCD) factor-
ization theorems similar to the inclusive DIS case have
been proven for DVCS in Refs. [8, 9] and for DVMP (see
Ref.[10]). Because the proton states have different mo-
menta, GPDs depend on two additional kinematic vari-
ables: the momentum transfer squared between the ini-
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tial and final proton which is proportional to the invari-
ant, t, and the light cone (LC) momentum transfer frac-
tion, ξ, or ζ (see e.g. Refs.[11, 12] for extensive reviews,
definitions and notations) . The phenomenology of per-
turbative QCD evolution is therefore similar to the one
extensively developed for inclusive scattering. The ob-
servables, the Compton Form Factors (CFFs), are com-
plex quantities obtained as convolutions of GPDs with
kernels governed by perturbative QCD.

Notwithstanding this additional complication, the
quark, antiquark and gluon components of CFFs and
consequently of GPDs, can be extracted from deeply vir-
tual exclusive experiments with the same logic behind
DIS, i.e. merging information from a combination of
electron and neutrino probes, including meson produc-
tion, e.g. J/ψ production which is sensitive to the gluon
content (see reviews in [13, 14]), and crossed channel ex-
periments such as deeply virtual exclusive pion-proton
Drell Yan scattering [15, 16]. While present available
data sets cover somewhat limited kinematic ranges which
are neither sufficient to separate out the various compo-
nents, nor to gauge their relative importance in the var-
ious regions, the exclusive program at Jefferson Lab@12
GeV, as well as upcoming measurements at COMPASS
and JPARC will provide, in the upcoming years, a large
amount of precise data. A wide range of diverse ex-
periments from various targets will be performed, from
DVCS, to timelike Compton scattering (TCS), and var-
ious meson production processes. The future planned
Electron Ion Colliders (EIC, EIcC), will further these ex-
ploration at both higher four momentum transfer squared
Q2 and low Bjorken x.

It is therefore timely that a flexible parametrization in-
cluding valence, sea quarks and gluon components which
can be perturbatively evolved to the scale of the data, is
made available. Our parametric forms build on the pre-
viously determined valence distributions which are mod-
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eled at a low initial scale, Q2
o ≈ 0.1 GeV2. At this scale

only valence quarks are present. Gluons and sea quarks
(quark-antiquark pairs) are resolved as independent de-
grees of freedom at a larger scale, Q2

o ≈ 0.58 GeV2. These
components subsequently undergo perturbative evolution
and generate additional gluon and sea quarks dynami-
cally through gluon bremmstrahlung.

The GPDs dynamical framework uses for the initial
scale a parametrization based on the reggeized spec-
tator model [17–20]. In this model we envisage scat-
tering from either a valence quark, a sea quark, or a
gluon; leaving behind, respectively, a spectator diquark,
tetraquark, or color octet proton. The proton-parton-
spectator vertex is modeled with a form factor which
provides a cut-off in the parton’s kT integration. Fi-
nally, Regge behavior is obtained by allowing the spec-
tator mass to vary modulated by a spectral function and
using the relation, x ≈ [Mq,g

X ]−1, Mq,g
X being the specta-

tor’s variable mass. As we explain in detail later on, the
model’s parameters are constrained recursively by first
fitting the GPD in the forward limit, Hq,q̄,g(x, 0, 0), for
q = u, d, to the corresponding PDFs, and in a subse-
quent step, fitting the t dependence to the form factor.
The GPD property of polynomiality is therefore obtained
by definition for the leading Mellin moment. Since this
is in essence an overlap model, polynomiality does not
hold directly for higher order Mellin moments by con-
struction, whereas it can be imposed with a measurable
uncertainty. The parametrization describes all chiral-

even GPDs, H,E, H̃, Ẽ in the quark sector, similar to
Refs.[19, 20]. We introduce a new parametrization for
Hg,q̄ and Eg,q̄ for the gluon and antiquarks. Perturbative
QCD evolution is performed at leading order (LO). We
also study an extension to next to leading order (NLO)
which provides the basis for quantitatively determining
the parameters of our next version to be presented in
future work.

The paper is organized as follows: in Section II we give
the relevant definitions including various symmetry and
integral properties of the quark and gluon GPDs; in Sec-
tion III we present the analytic form of the parametriza-
tion for the various quark and gluon GPDs at the ini-
tial scale Q2

o; in Section IV the numerical values of the
different quark flavor and gluon GPDs parameters are
displayed in tabulated form and details of perturbative
QCD evolution of GPDs are illustrated; numerical re-
sults for the various GPD components are shown and
discussed in Section V. Finally, in Section VI we present
our conclusions and outlook. Many supplementary for-
mulae explaining the details of the parametrization along
with its summarized, ready to use, version are presented
in the appendices.

II. DEFINITIONS

The parametrization for all twist-two chiral-even
GPDs in the quark and gluon sectors is given in terms

FIG. 1: (top) Cut diagram for the calculation of GPDs in
the spectator model with labels for both the longitudinal mo-
mentum fractions and transverse momentum of the parton,
proton and spectator system with respect to the initial pro-
ton. In the symmetric system of variables the momentum
fractions are evaluated using Eqs.(2,3); (bottom) vertices for
the spectator system: scalar (ΛX = 0) or axial vector diquark
(ΛX = 1) for valence quarks; tetraquark (ΛX = 0, 1, 2)for sea
quarks, and color octet proton (ΛX = 1/2) for gluons.

of a set of two light cone (LC) momentum fractions, and
the Mandelstam invariant, t. The LC variables repre-
sent the quark/gluon longitudinal momentum fraction,
X, and the difference between the longitudinal momen-
tum fractions of the outgoing and incoming quark, ζ,
respectively (Figure 1, for reviews see Refs.[13, 21, 22]).

The support in X is expressed in the following form,

F q,q̄,g(X, ζ, t;Q2) =


FDGLAPq,g ζ ≤ X ≤ 1

FERBLq,q̄,g 0 ≤ X < ζ

FDGLAPq̄,g −1 + ζ ≤ X < 0

(1)

where F q,q̄,g ≡ Hq,q̄,g, Eq,q̄,g, H̃q,q̄,g, Ẽq,q̄,g. The
acronyms “DGLAP” and “ERBL” designating specific
X ranges in Eq.(1) refer to the two different modes of
perturbative QCD evolution in these regions.

The kinematic variables are defined using deeply vir-
tual exclusive photo-production, ep→ e′p′γ, as a testing
ground experiment for GPDs,

• X, the LC momentum fraction; X = k+/p+, where
k and p are the parton/proton four-momenta (see
Appendix A for detailed kinematics definitions).
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• t, the four-momentum transfer squared between the
initial and final proton; t = ∆2 = (p − p′)2 =
∆µ∆µ = ∆2

0 − ∆2
⊥ − ∆2

3. t ultimately gives ac-
cess to the transverse spatial distribution, and is
always negative.

• ζ the skewness parameter; ζ = ∆+/p+ > 0

• Q2, the virtuality of the initial photon exchanged
between the initial and final electrons; Q2 = −(ke−
k′e)

2.

We use the so-called asymmetric frame where the ini-
tial (final) proton, p (p′), and initial (final) parton, k
(k′), four-momentum components are given in the form,
v ≡ (v+, v−,v⊥), (see Figure 1 and appendix A).

The asymmetric system of LC variables was introduced
to better describe the dynamics of the spectator model in-
cluding perturbative QCD evolution [19, 20]. In this case,
the initial proton is set along the z-axis. A more com-
monly used system uses a symmetric set, (x, ξ). The con-
version between symmetric (x, ξ) and asymmetric vari-
ables (X, ζ) is given by,

x =
k+ + k′+

P+ + P ′+
=
X − ζ/2
1− ζ/2

⇒ X =
x+ ξ

1 + ξ
(2)

ξ =
2∆+

P+ + P ′+
=

ζ

2− ζ
⇒ ζ =

2ξ

1 + ξ
. (3)

For the GPDs we have,

F q,q̄,g(x, ξ) =



FDGLAP
q for x > ξ

FERBL
q,q for − ξ < x < ξ

FDGLAP
q for − 1 < x < −ξ,

(4)

where similar definitions hold for the helicity and gluon

distributions, F̃ . Other variables used to define GPDs in
the LC frame are (see also [19]),

X ′ =
X − ζ
1− ζ

, 1−X ′ =
1−X
1− ζ

(5)

k̃ = k⊥ −
1−X
1− ζ

∆⊥ (6)

t = ∆2 = −M
2ζ2

1− ζ
− ∆2

⊥
1− ζ

= −4M2ξ2

1− ξ2
−∆2

⊥
1− ξ
1 + ξ

(7)

where it should be underlined that the expression of the
invariant, t, in terms of the longitudinal and transverse
variables, ζ(ξ) and ∆T is specific to the chosen LC frame.

The minimum kinematically allowed value of t, ob-
tained for ∆T = 0 is,

t0 = −4ξ2M2

1− ξ2
. (8)

A. Limits and constraints

GPDs are subject to constraints in the forward limit
(i.e. for ζ, t → 0) and in their Mellin moments struc-
ture (polynomiality). Furthermore they satisfy positiv-
ity bounds written in terms of PDFs from DIS. Although
these limits were written in several reviews, e.g. Ref.[21],
we provide an essential list below.

1. Forward limit

In the forward limit the quark GPDs H and H̃ define
the PDFs,

Hq(X, 0, 0;Q2) ≡ fq,1 (X,Q2) (9)

H̃q(X, 0, 0;Q2) ≡ gq1(X,Q2) (10)

where fq1 , gq1 are the unpolarized and helicity PDFs, re-
spectively. In the gluon sector,

Hg(X, 0, 0;Q2) ≡ Xg(X,Q2) (11)

H̃g(X, 0, 0;Q2) ≡ X∆g(X,Q2), (12)

g(X) and ∆g(X) being the unpolarized and helicity
PDFs, respectively.

2. Polynomiality

Stemming from the property of polynomiality (see dis-
cussion in [21]), in the symmetric frame notation, 1 the
integrals in x of the quark GPDs are independent of ξ
and give the various proton elastic form factors,∫ 1

−1

dxHq(x, ξ, t;Q2) = F q1 (t) (13)∫ 1

−1

dxEq(x, ξ, t;Q2) = F q2 (t) (14)∫ 1

−1

dxH̃q(x, ξ, t;Q2) = GqA(t) (15)∫ 1

−1

dxẼq(x, ξ, t;Q2) = GqP (t) . (16)

F q1 and F q2 are the quark q contribution to the proton
Dirac and Pauli form factors; similarly, GqA and GqP are
the quark q axial and pseudoscalar form factors.

The second moments of the quark GPDs, H and E
read, ∫ 1

−1

dxxHq(x, ξ, t;Q2) = Aq(t) + (2ξ)2Cq(t) (17)

1 The same integral properties can be written in the asymmetric
frame with a switch of variables, and inserting the Jacobian, 1

1− ζ
2

[19].



4∫ 1

−1

dxxEq(x, ξ, t;Q2) = Bq(t)− (2ξ)2Cq(t) (18)

(similar relations are found in the axial vector sector).
In the gluon sector we consider constraints given by

the moments,∫ 1

0

dxHg(x, ξ, t;Q2) = Ag(t) + (2ξ)2Cg(t) (19)∫ 1

0

dxEg(x, ξ, t;Q2) = Bg(t)− (2ξ)2Cg(t) (20)

Ag, Bg, Cg have been recently calculated in lattice QCD
[23]. All of the form factors presented above have been
either measured or calculated in lattice QCD and, there-
fore, provide essential constraints to the parametrization.

The form factors Aq,g, Bq,g, Cq,g depend on the scale,
Q2, and are also scheme dependent at Next to Leading
order (NLO) in perturbative QCD.

Summing Eqs.(17,18,19,20) at t = 0, one finds the
(scale independent) angular momentum sum rule [1],

1

2

[∫ 1

−1

x(Hq + Eq) +

∫ 1

−1

(Hg + Eg)

]
= Jq + Jg =

1

2
,

(21)
whereas momentum conservation of the nucleon con-
stituents is expressed by,∫ 1

−1

xHq +Hg = Mq +Mg = 1. (22)

Equations for the full polynomiality structure involving
the Mellin moments for any value of integer value n are
reviewed in [11, 22].

Polynomiality is imposed numerically, and not an
ab initio property in parton-like models such as the
reggeized spectator model. In our approach we fit the
first moments, Eqs.(13,14,15,16) to the measured form
factors; the n = 1 moments are fitted to moments of
PDFs at t = 0 and at a given Q2 value. Their value at
t < 0 can be only constrained from lattice QCD results
since no measurements of these form factors are available.
For illustration, in Figure 2 we show the first few Mellin
moments, calculated with our parametrization, for the
GPDs Hu (left panel) and Hg (right panel) compared to
polynomial forms in ξ2 at t = −0.3 GeV2, and Q2 = 4

GeV2. Notice that the range in ξ is reduced because of
the kinematic limit obtained imposing ∆2

⊥ ≥ 0 in Eq.(7).
Although polynomiality is a fitted property, we find that
the first few Mellin moments, which are most important
to determine the GPDs behavior, follow this property
well within the given error from the fit. We ascribe this
behavior to the Lorentz invariance of the model. To fur-
ther address this issue one could explore ansazte similar
to the one devised for pion GPDs in Ref.[24, 25].

In Figure 3 we show results from our fit compared
to lattice QCD calculations for the flavor non-singlet,
n = 2 u − d moments, namely Au−d2,0 ≡ Au − Ad,
Cu−d2,0 ≡ Cu − Cd, Eq.(17), and the n = 3 moment,

Au−d3,0 =
∫
dxx2(Hu − Hd) [26, 27]. Our fit was con-

strained using data at t = 0 only. It shows an excellent
agreement with lattice calculations for the A form fac-
tors, whereas a discrepancy with the C form factor seems
to emerge at small t values.

3. Positivity

Generalized parton distributions are bounded by the
forward parton distribution functions at two different
momentum fraction values. This bound has been studied
in Refs. [28–31], for an essential review see Ref.[21].

The GPDs in the DGLAP region limit to the PDFs in
the forward limit where ξ and t are equal to 0. Therefore,
one would expect relations between the two distributions.
Using the wave function description of the GPDs, one can
work out the Schwartz inequality constraining the GPDs
with an upper limit in terms of the unpolarized PDFs.
Stronger constraints can be made when using all of the
polarized PDFs in this constraint.

The momentum fractions for an incoming quark with
respect to the incoming proton, and an outgoing quark
with respect to the outgoing proton read,

xin =
x+ ξ

1 + ξ
=⇒ Xin = X (23)

xout =
x− ξ
1− ξ

=⇒ Xout =
X − ζ
1− ζ

(24)

The positivity constraints are given by,

(1− ξ2)
(
Hq(x, ξ, t)− ξ2

1− ξ2
Eq(x, ξ, t)

)2

+
( √

t0 − t
2M
√

1− ξ2
Eq(x, ξ, t)

)2

≤ q(xin)q(xout)

1− ξ2
(25)

Eq(x, ξ, t) ≤ 2M√
t0 − t

√
q(xin)q(xout) (26)

(1− ξ2)
(
H̃q(x, ξ, t)− ξ2

1− ξ2
ξẼq(x, ξ, t)

)2

+
( √

t0 − t
2M
√

1− ξ2
ξẼq(x, ξ, t)

)2

≤ q(xin)q(xout)

1− ξ2
(27)
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FIG. 2: Polynomiality property for Hu/g in our parametrization calculated for a typical JLab kinematic bin t = −0.3 GeV2

and Q2 = 4 GeV2. The blue line is our parametrization results and the red lines are correspond to a polynomial fit in powers
of ξ2. We demonstrate that polynomiality is satisfied in our parametrization.

FIG. 3: Moments of GPDs as calculated by the polynomial fits in ξ2 in red according to our parametrization evolved to a final
scale of Q2 = 4 GeV2. These are shown compared to moments calculated in lattice QCD [26]. The errors of “VA” are the
propagated errors of the fit parameters.
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Ẽq(x, ξ, t) ≤ 2M

ξ
√
t0 − t

√
q(xin)q(xout) (28)

FIG. 4: Positivity constraints for the GPD Hu distribution at
the kinematics ζ = 0.25, Q2 = 4 GeV2, and t = −0.1 GeV2.
We use the LO PDF parametrization [32] for comparison. The
red curve is the right hand side of (25) and the blue curve is
the left hand side of (25).

An illustration of how our parametrization satisfies the
positivity constraints is shown in Figure 4, for the GPD
Hu plotted vs. X at the kinematic point ζ = 0.25, Q2 = 4
GeV2, and t = −0.1 GeV2.

B. Symmetries

Symmetry relations in the longitudinal momentum
fraction X, or x in the symmetric system of variables,
play an important role in GPD modeling [21, 33, 34]).

In the symmetric system of variables, the support of
F (x, ξ) ranges from x ∈ [−1, 1], where, in particular, the
quark distribution is defined in the range x ∈ [−ξ, 1], and
the anti-quark distribution is defined in the range x ∈
[−1, ξ]. The two regions overlap in the range x ∈ [−ξ, ξ],
called the ERBL region. For the gluons, we have 0 < x <
1, and since the gluons are their own anti-particle they
are equivalently described through symmetries about the
x = 0 axis.

The antiquark distributions are defined for the unpo-

larized, F = H,E, and the helicity, F̃ = H̃, Ẽ, GPDs as,

Fq̄(x, ξ) = −Fq(−x, ξ), (29a)

F̃q̄(x, ξ) = F̃q(−x, ξ) (29b)

From these definitions we obtain the contributions to the
(−) (flavor non-singlet, NS) and (+) distributions for the

unpolarized case,

FNS = FqV ≡ F−q (x, ξ) = Fq(x, ξ)− Fq(x, ξ) (30a)

F+
q (x, ξ) = Fq(x, ξ) + Fq(x, ξ),(30b)

and, similarly, for the helicity dependent GPDs we have,

F̃NS = F̃−q (x, ξ) = F̃q(x, ξ)− F̃q(x, ξ) (31a)

F̃+
q (x, ξ) = F̃q(x, ξ) + F̃q(x, ξ) (31b)

For perturbative evolution (see Section IV B) we intro-
duce the flavor singlet distributions given by the combi-
nations,

FΣ ≡
∑
q

F+
q (x, ξ) =

∑
q

[Fq(x, ξ) + Fq(x, ξ)] , (32)

F̃Σ ≡
∑
q

F̃+
q (x, ξ) =

∑
q

[
F̃q(x, ξ) + F̃q(x, ξ)

]
(33)

From Eq.(29) it follows that the symmetries of these dis-
tributions around x = 0 are,

FNS(x, ξ) = FNS(−x, ξ), (34a)

FΣ(x, ξ) = −FΣ(−x, ξ), (34b)

F̃NS(x, ξ) = −F̃NS(−x, ξ) (34c)

F̃Σ(x, ξ) = F̃Sq (−x, ξ) (34d)

For the gluon distributions we have that the unpolarized
distributions are symmetric around x = 0, while the he-
licity distributions are antisymmetric,

Fg(x, ξ) = Fg(−x, ξ), (35a)

F̃g(x, ξ) = −F̃g(−x, ξ) (35b)

We must also acknowledge a second symmetry about the
off-diagonal direction ξ. Along with symmetry or asym-
metry under x → −x these off-diagonal distributions all
have a symmetry under ξ → −ξ meaning that these dis-
tributions are all time reversal even.

In the asymmetric system, by changing sets of variables
from (x, ξ) to (X, ζ) using Eqs.(2,3) one has a similar set
of symmetries where now the support region is,

X ∈ [−1 + ζ, 1] (36)

while the symmetry axis changes from x = 0 to X = ζ/2,
whereby the quark distribution is defined in the range
X ∈ [0, 1], and the anti-quark distribution is defined in
the range X ∈ [−1 + ζ, ζ], the two regions overlapping in
X ∈ [0, ζ], the ERBL region. The (+) and (−) distribu-
tions are defined as,

F−q (ζ −X, ζ) = Fq(ζ −X, ζ)− Fq(ζ −X, ζ)
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= −Fq(X, ζ) + Fq(X, ζ)

= F−q (X, ζ) (37)

Similarly for the flavor singlet, plus, distribution one
finds.

F+(ζ −X, ζ) =
∑
q

Fq(ζ −X, ζ) + Fq(ζ −X, ζ)

=
∑
q

−Fq(X, ζ)− Fq(X, ζ) (38)

= −F+(X, ζ) (39)

The same argument can be used for the gluon distribu-
tion in which we find

Fg(ζ −X) = Fg(X) (40)

For the helicity GPDs one has,

F̃−q (ζ −X, ζ) = −F̃−q (X, ζ) (41)

F̃+(ζ −X, ζ) = F̃+(X, ζ) (42)

Lastly the gluon helicity distribution symmetry in the
ERBL region can similarly be found.

F̃g(ζ −X) = −F̃g(X) (43)

The behavior of the valence quark and sea quark distri-
butions around X = ζ/2 is illustrated in Figure 5, where
in the upper panel we show the GPDs H−u (red curve)
and H+

u (blue curve), which are respectively, symmetric
and antisymmetric with respect to X = ζ/2 (for illustra-
tion purposes we take Hū = 0 for X > ζ, and Hu = 0
for X < 0, in the DGLAP region). From the figure it
appears clearly that Hu and Hū are not symmetric. The
middle panel illustrates the symmetries for a low value
of ζ, where the ERBL region is suppressed. Finally, the

lower panel shows the symmetries for the GPD H̃u.
In Figure 6 we show the symmetry of the gluon distri-

bution with respect to X = ζ/2.

C. Valence quark GPDs: SU(4) wave function

For valence quarks the proton-quark-diquark vertex
function, Fig.1 and Appendix B, can have two possible
couplings depending on whether the outgoing diquark is
a scalar (S = 0), or an axial vector (S = 1). Using the
SU(4) symmetry of the proton wave function one has [35],

| p ↑〉 =

√
2

1 + a2
S

[ aS√
2
| u ↑ S0

0〉+
1

3
√

2
| u ↑ T 0

0 〉

− 1

3
| u ↓ T 1

0 〉 −
1

3
| d ↑ T 0

1 〉+

√
2

3
| d ↓ T 1

1 〉
]
(44)

where S0
0 ≡ SS3

I3
is the scalar diquark with isospin 0 and

spin component 0; T 0,1
0,1 ≡ T

S3

I3
is the axial vector (triplet)

FIG. 5: Quark symmetries. Thick dotted line is at ζ/2,the
solid line is at ζ, thin dotted line is at 0, and the dot dashed
line is at −1 + ζ. The u quark distribution has been added
here. We can see that the symmetries are made explicit here.
In the case of the helicity GPD, the − distribution (represent-
ing the valence helicity distribution) is now anti-symmetric
due to symmetry constraints and the + distribution (repre-
senting the quark sea helicity distribution) is symmetric.
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FIG. 6: The bosonic nature of the gluon means that it is
its own anti-particle, therefore the gluon is symmetric about
X = ζ/2 or x = 0 in the symmetric system of variables.

diquark with indicated isospin and spin components, and
the parameter aS = 1 for SU(4) symmetry and can differ
from 1 to allow for symmetry breaking [36]. When ma-
trix elements are formed with this state and the corre-
sponding spin down proton, the sum over the spin states
leaves purely flavor or isospin couplings. This feature of
the model allows us to separate out the u and d quark
flavors. The GPDs, F = H,E, decompose as,

Fu =
2

1 + a2
S

(
3

2
a2
SF

(0) +
1

2
F (1)

)
Fd =

2

1 + a2
S

F (1), (45)

For the helicity dependent GPDs, F̃q = H̃q, Ẽq, only the
quark spin state | 0, ↑〉 contributes and one has,

F̃u =
2

1 + a2
S

(
3

2
a2
SF̃

(0) − 1

6
F̃ (1)

)
F̃d = − 2

1 + a2
S

1

3
F̃ (1), (46)

If the outgoing spectactor is a tetraquark, i.e. in the case
of a proton-antiquark-tetraquark coupling (Fig.1, rhs),
one can also have an S = 2 outgoing system. However, we
consider only S = 0, 1, and model the ū, d̄ distributions
similarly to the quark case.

D. Parametrization form

We present our parametric forms separately for the

valence quark (F−q , F̃
−
q ), antiquark (Fq, F̃q) , and gluon

(Fg, F̃g) components. These expressions are valid at an
initial scale, Q2

o, therefore the scale does not appear
among the arguments.

For all components the functional form in the DGLAP
region is given as,

FDGLAP (X, ζ, t) = FMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, ζ, t) (47)

where the functions FMΛ

MX ,m
≡ HMΛ

MX ,m
, EMΛ

MX ,m
, H̃MΛ

MX ,m
,

ẼMΛ

MX ,m
are obtained as the product of proton-parton-

spectator vertices (Fig. 1, Appendix B). These functions
depend on mass parameters: MX , the minimum specta-
tor mass, m, the struck parton mass, and MΛ, the dipole
form factor cut-off mass value. Rα,α

′

p ensures the proper
low X Regge behavior resulting from a generalization of
the spectator model picture in which the mass of the
spectator, MX varies according to a spectral distribu-
tion [37]. The spectral function produces a smearing in
MX ∝ 1/X such that it reproduces the experimentally
observed slope in X for X → 0, or equivalently at large
values of the spectator mass. The role of the spectral
function for GPDs was studied in detail in Ref.[20].

The parametrization in the ERBL region is obtained
by introducing polynomial forms in X that are either
symmetric or antisymmetric with respect to the point
X = ζ/2, and by imposing the continuity condition at the
cross over points, X = 0, X = ζ, and the polynomiality
condition (Section II A 2).

All parametric forms are evaluated at an initial scale,
Q2
o, and evolved to the scale where constraints from either

experimental data or lattice QCD calculations can be
imposed. The value of Q2

o is, therefore, also a parameter
in our fit forms. Its impact on evolution for the various
components is presented and discussed in Section IV B.

The expressions for all GPDs at the initial scale Q2
o, to

be readily used in numerical calculations, are summarized
in Appendix C.

III. PARAMETRIZATION DESCRIPTION

We now present expressions for the parametrization of
the valence, antiquark, and gluon distributions evaluated
at the initial scale, Q2

o. The parametric forms are subse-
quently evolved numerically to the scale of current exper-
imental data and can be used directly in the cross sec-
tion and asymmetry evaluations, including MonteCarlo
simulations. The detailed calculations in the spectator
model leading to the expressions for the various GPDs
are shown in Appendix B. The numerical values of the
parameters are listed in the tables in Section IV, where
a description of the fitting procedure is also given.

The current parametrization represents an extension of
the one presented in Refs.[17–20] in the valence quark sec-
tor, to the antiquark and gluon sectors. The parametriza-
tion includes now the GPDs H, and E for the following

flavors, uv, dv, ū, d̄, and g; H̃, and Ẽ for uv, dv. The
extension to strange and charm quarks can be consid-
ered as soon as more stringent constraints from data and
lattice QCD will be available.
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An important benchmark for GPD parametrizations is
given by the ability to reproduce the behavior of the nu-
cleon form factors when integrated in X. In the valence
sector, in particular, one can benefit from the flavor sep-
arated nucleon Dirac and Pauli form factors obtained in
the accurate analysis of Ref.[38]. For the gluon GPDs we
rely on lattice QCD calculations recently made available
in Ref.[23]. On the other hand, we used an approximated
method to normalize the antiquark GPDs since, while
there exist lattice computations of the second Mellin mo-
ments of flavor singlet PDFs [26, 27], a clearcut analysis
of flavor separation in the antiquark sector is still lacking
(see however Refs.[39, 40]).

An example of the uv, dv, u+ū, d+d̄, g GPDs H and E,
generated with our parametrization is shown in Figure 7
at the kinematic point t = −0.3 GeV2, xBj ≈ ζ = 0.2,
and Q2 = 4 GeV2.

The range of validity of our parametrization is:

• 0.0001 ≤ X ≤ 0.85

• 0.01 ≤ ζ ≤ 0.85,

• 0 ≤ −t ≤ 2 GeV2

• 1 ≤ Q2 ≤ 100 GeV2 .

A. Valence quarks

Our model uses two different descriptions of the va-
lence quark distribution in the DGLAP and ERBL re-

gions. The DGLAP region can be considered a direct
extension of the parton model in the forward region,
where the struck quark with initial longitudinal momen-
tum fraction X is reinserted in the proton target after
reducing it to X − ζ, ζ being the fraction transferred in
the exclusive scattering process. In the DGLAP region,
the initial and final quarks are both off-shell, while the
diquark intermediate state is on mass shell. The ERBL
region is described through a minimal mathematical form
that is consistent with the properties of continuity at
X = ζ, polynomiality, and X symmetry. This form is suf-
ficiently flexible to describe the data where GPDs appear
integrated over in the CFFs, while avoiding ambiguities
due to semi-disconnected diagrams which are inherent to
a partonic formulation [19].

1. DGLAP region: ζ < X < 1 (ξ < x < 1)

For the valence quark distributions the spectator is
a system with diquark quantum numbers and variable
mass, MX , with spin S = 0, 1. The analytic expressions
of our model are given directly as a function of the mass
parameters for the quark, m, diquark, MX , and dipole
mass parameter, MΛ. We set as = 1, but allow the mass

parameters to vary in the axial-vector sector (H̃, Ẽ) with
respect to the same parameters for H and E.

The parametric forms read,

HMΛ

MX ,m
= 2πN

(
1− ζ

2

)∫ ∞
0

dk⊥k⊥
1−X

a
[
(m+MX) (m+MX ′) + k2

⊥
]
− b (1−X ′) k⊥∆⊥

D2 (a2 − b2)
3/2

+
ζ2

4(1− ζ)
EMΛ

MX ,m
,

(48)

EMΛ

MX ,m
= 2πN

(
1− ζ

2

)∫ ∞
0

dk⊥k⊥
1−X

−4Mk2
⊥[−(m+MX) + (m+MX ′)] + a [2M(−m+MX)](1−X ′)

(1− ζ)D2 (a2 − b2)
3/2

(49)

H̃MΛ

MX ,m
= 2πN

(
1− ζ

2

)∫ ∞
0

dk⊥k⊥
1−X

a
[
(m+MX) (m+MX ′)− k2

⊥
]

+ b (1−X ′) k⊥∆⊥

D2 (a2 − b2)
3/2

+
ζ2

4(1− ζ)
ẼMΛ

MX ,m

(50)

ẼMΛ

MX ,m
= 2πN

(
1− ζ

2

)
1− ζ
ζ

∫ ∞
0

dk⊥k⊥
1−X

−4Mk2
⊥[(m+MX) + (m+MX ′)]− a [4M(−m+MX)](1−X ′)

D2 (a2 − b2)
3/2

(51)

where M is the proton mass, X ′ given in Eq.(5) and,

a =M(X ′)− k2
⊥

1−X ′
−∆2

⊥(1−X ′), b = 2k⊥∆⊥,

(52a)

D =M(X)− k2
⊥

1−X
, (52b)

M(Y ) = YM2 −M2
Λ −M2

X

Y

1− Y
, (52c)

where Y = X,X ′.
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FIG. 7: GPDs H (left) and E (right) with all flavors for the kinematics Q2 = 4 GeV2, t = −0.3GeV2, and ζ = 0.2.

We parametrize the Regge term as follows,

Rα,α
′

p = X−[α+α′(1−X)pt], (53)

where the parameters: α, α′, p take on different values
depending on the GPD. Notice that, although our para-
metric form is given in terms of the asymmetric set of
variables, (X, ζ, t), these can readily be transformed into
the symmetric set (x, ξ, t) using Eqs.(2),(3).

Summarizing, the expressions for the valence quarks in
the DGLAP region are given by,

H−q = Hqv (X, ζ, t) = HMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) (54)

E−q = Eqv (X, ζ, t) = EMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) (55)

H̃−q = H̃qv (X, ζ, t) = H̃MΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) (56)

Ẽ−q = Ẽqv (X, ζ, t) = ẼMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) ,(57)

where HMΛ

MX ,m
is given in Eq.(48), EMΛ

MX ,m
in Eq.(49),

H̃MΛ

MX ,m
in Eq.(50) and ẼMΛ

MX ,m
in Eq.(51). While these

are different functional forms, all GPDs have the same
form of the Regge term. The parameters values specific
to each GPD are listed in Section IV.

2. ERBL region: 0 < X < ζ (ξ < x < ξ)

To parametrize the valence component of the GPDs H
and E in the ERBL region we use the symmetry around
the point X = ζ/2 (x = 0) for the F−, flavor non-singlet
distributions, given in Eq.(30a). By choosing a quadratic
form for the X dependence, we can fix the three unknown
parameters,

Fqv (X, ζ, t) = F−q = aFX
2 + bFX + cF (58)

by imposing the following conditions on the symmetric
component, F−ERBL = H−, E−:

(1) symmetry around X = ζ/2 ⇒ F−(ζ, ζ, t) =
F−(0, ζ, t),

(2) continuity condition at X = ζ, F−ERBL(ζ, ζ, t) =

F−DGLAP (ζ, ζ, t),

(3) polynomiality at leading order, Eqs.(13-16), taking
H, for instance,

F q1 (t) =

∫ 1

−1+ζ

dX

1− ζ/2
Hq(X, ζ, t)

=
1

2

∫ ζ

ζ/2

dX

1− ζ/2
H−q (X, ζ, t) +

∫ 1

ζ

dX

1− ζ/2
H−q (X, ζ, t)

(59)

By using the constraints (1) and (2), one finds,

bF = −ζaF cF = FDGLAP (ζ, ζ, t).

The parameter a is determined imposing constraints (3),
giving,

aF =
6

ζ3

[
ζF (ζ, t)− 2SF (ζ, t)

]
, (60)

where,

H(ζ, t) = HDGLAP (ζ, ζ, t), E(ζ, t) = EDGLAP (ζ, ζ, t)

are the GPD values at the crossover point between the
ERBL and DGLAP regions calculated using Eqs.(48-51).

SF is the area subtended by F− ≡ H−, E−, H̃+, Ẽ+, re-
spectively Eqs.(30a, 30b, 34c, 34d), in the ERBL (X < ζ)
region. This is obtained by subtraction from the various
form factors, Eqs.(13-16) as,

SH =

∫ ζ

0

dX H−(X, ζ, t) =
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=

(
1− ζ

2

)(
F1 −

∫ 1

ζ

H(X, ζ, t)

1− ζ/2
dX

)
(61a)

SE =

∫ ζ

0

dX E−(X, ζ, t) =

=

(
1− ζ

2

)(
F2 −

∫ 1

ζ

H(X, ζ, t)

1− ζ/2
dX

)
(61b)

Notice that SF appears in the definition of a, Eq.(60),
multiplied by a factor of 2 because of the crossing sym-
metry property for the areas subtended by F− and F
(see Section II B).

The final analytic expressions are given by,

Hqv (X, ζ, t) = aHX
2 − aH ζX +H(ζ, t)

(62)

Eqv (X, ζ, t) = aEX
2 − aE ζX + E(ζ, t)

(63)

where aH and aE are calculated from Eq.(60).
To conclude, our parametric form in the ERBL region

introduces no free parameters. As more data from DVCS
and related experiments become available, thus allowing
a larger number of parameters, more flexibility could be
introduced by e.g. including higher powers in X.

For the valence components of the GPDs H̃ and Ẽ the

symmetry is opposite, i.e. F̃− is antisymmetric around
X = ζ/2 (x = 0). We consider the following form,

F̃−q = F̃qv (X, ζ, t) = aF̃X
3 + bF̃ ζX

2 + cF̃X + dF̃ .

(64)

Similar to H,E, the parameters can be fixed by consid-
ering the symmetry conditions for anti-quarks,

(1) antisymmetry around X = ζ/2 ⇒ F̃ (ζ, ζ, t) =

−F̃ (0, ζ, t).

(2) continuity condition at X = ζ, F̃ERBL(ζ, ζ, t) =

F̃DGLAP (ζ, ζ, t),

(3) F̃ERBL = 0 at X = ζ/2 (the integral in X is zero).
One can therefore determine three of the parameters

as,

bF̃ = −3

2
aF̃ ζ, cF̃ =

1

ζ

[
2F̃ (ζ, t) +

1

2
aF̃ ζ

3

]
dF̃ = −F (ζ, t) (65)

with F̃ (ζ, t) = F̃DGLAP (ζ, ζ, t), while aF̃ is a free param-
eter which was determined numerically (see Table I).

The analytic expressions for the valence helicity GPDs
are given by,

H̃qv (X, ζ, t) = aH̃X
3 − 3

2
aH̃ ζX

2 + cH̃X + H̃(ζ, t)

(66)

Ẽqv (X, ζ, t) = aẼX
3 − 3

2
aẼ ζX

2 + cẼX + Ẽ(ζ, t)

(67)

The values of the parameters aH̃ , aẼ are given in the ta-
bles in Section IV. All other parameters are constrained.

B. Antiquarks

Similar to the valence quarks, we describe the anti-
quark GPDs in a spectator model in the DGLAP region,
and in a symmetric parametric form in the ERBL region.

1. DGLAP region: −1 + ζ < X < 0, (−1 < x < −ξ)

In the spectator model, if the struck parton is an anti-
quark, the spectator is a tetraquark (Figure 1). Because
the tetraquark can have spin S = 0, 1, 2, the wave func-
tion has, in principle, a more complicated form than the
SU(4) form described in Section II C, which would al-
low for more quark flavors than just the u and d quarks.
We, however, consider a simplified version and we adopt
the same mathematical expressions given for the valence
quarks in Eqs.(48, 49, 50, 51), with different values of
the mass parameters. The parametrization forms in the
antiquark sector are

H+
q = HMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) (68)

E+
q = EMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) (69)

H̃+
q = H̃MΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) (70)

Ẽ+
q = ẼMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t) , (71)

The parameter values are listed in Table II. Notice that
the Regge term also has the same form as for the valence
contribution, Eq.(53).

2. ERBL region

In the ERBL region the GPDs H and E for antiquarks

are antisymmetric with respect to X = ζ/2, while H̃

and Ẽ are symmetric. We choose, therefore the following
form for H and E (analogous to the axial vector sector
in Section III A 2) where a+ is a free parameter,

F+
ERBL(X, ζ, t) = a+X3 − 3

2
a+ζX2 + cX + d,

(72)

The coefficients b, c, d are constrained similarly to
Eqs.(66,67).

For the GPDs H̃ and Ẽ we take a symmetric form
analogous to Eq.(58), in the vector sector. We have,

H̃ERBL(X, ζ, t) = aH̃X
2 − aH̃ ζX + H̃(ζ, t)
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(73)

ẼERBL(X, ζ, t) = aẼX
2 − aẼ ζX + Ẽ(ζ, t)

(74)

Therefore, we have no free parameters for the antiquark
axial-vector GPDs in the ERBL region.

C. Gluons

A well known issue to PDF fitters is that a non negli-
gible gluon density needs to be present already at a low
scale in order to ensure that perturbative QCD evolu-
tion of the parton distributions produces a steep enough
slope to reproduce the data at low X. If, on the contrary,
gluon distributions are initially set to zero, and only gen-
erated perturbatively, the resulting quark/antiquark dis-
tributions become too soft. We model the gluon distri-
bution at the initial scale in a spectator model with a
strong gluon emitted at the proton vertex leaving behind
an octet color state with proton quantum numbers. The
vertex is described by (Figure 1, Appendix B),

Γ(k)ū(p− k)γµU(p) εµ(k)

where u(p − k) is the outgoing color octet proton, U(p)
is the incoming proton, εµ is the struck gluon wave

function; Γ(k)γµ describes the coupling at the proton-
octet proton-gluon vertex in a similar way to the proton-
quark-diquark vertex (details are given in Appendix B).
This model allows us to evaluate the gluon GPDs in the
DGLAP region. We extend our calculation to the ERBL
region using the symmetry properties of gluon distribu-
tions described in Section II B. An important part of
our calculation is given by the fact that we can model
the t dependence of gluon GPDs by ensuring that our
model follows the normalization provided by the Mellin
moments evaluations for Hg andf Eg given in Ref.[23].

1. DGLAP region: ζ < X < 1, (ξ < x < 1)

The gluon-proton amplitudes for the GPDs, Hg, Eg,
constructed from the tree level vertex for the process,

p→ g + p8,

where p8 is a color octet spetactor baryon with spin 1/2
and momentum kX = p − k = p′ − k′, are given by the
following expressions,

H
Mg

Λ

Mg
X

= 2πN
∫
dk⊥

k⊥
1−X

1

D2 (a2 − b2)
3/2

×
{
a

[
XX ′

(
(1−X)M −MX

)(
(1−X ′)M −MX

)
+

(
1

1−X ′
− (1−X)

)
k2
⊥

]
− b

(
1

1−X
+ (1−X ′)

)
k⊥∆⊥

}
+

ζ2

4(1− ζ)
Eg (75)

E
Mg

Λ

Mg
X

= 2πN
∫
dk⊥

k⊥
1−X

1

D2 (a2 − b2)
3/2

−2M(1− ζ)

1− ζ
2

×
{

2k2
T [X((1−X)M −MX)−X ′(1− ζ)((1−X ′)M −MX)]− a(1−X ′)X [(1−X)M −MX ]

}
,

(76)

where a, b, D are given by the same definitions as in Eqs.(52).
For the gluon helicity dependent GPDs we find,

H̃
Mg

Λ

Mg
X

= N
∫
d2k⊥

1

(1−X)2

[
X(X − ζ)((1−X)M −MX)

(
1−X
1− ζ

M −MX

)
+
(
1− ζ − (1−X)2

)
kT · k̃T

]
(k2 −M2

Λ)2(k′2 −M2
Λ)2

+
ζ2

4(1− ζ)
Ẽg (77)

Ẽ
Mg

Λ

Mg
X

= N
∫
d2k⊥

2

ζ

(−2M)(1− ζ)

(1−X)
×

[
X((1−X)M −MX)

k̃T ·∆T

∆2
T

+ (X − ζ)(
1−X
1− ζ

)M −MX)
k̃T ·∆T

∆2
T

]
(k2 −M2

Λ)2(k′2 −M2
Λ)2

(78)

The gluon Regge term is the same as Eq.(53) where the αg parameter is obtained from fitting to the power of
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Hg(X, 0, 0) ≡ Xg(X), the gluon PDF.
The expressions for the gluon distributions for unpo-

larized gluons in the DGLAP region are given by,

Hg(X, ζ, t) = H
Mg

Λ

Mg
X

(X, ζ, t)R
αg,α

′
g

p (X, t) (79)

Eg(X, ζ, t) = E
Mg

Λ

Mg
X

(X, ζ, t)R
αg,α

′
g

p (X, t) (80)

We limit ourselves to listing the expressions for the helic-
ity gluon distributions, since their parameters cannot be
sensibly constrained at present, as neither experimental
results nor lattice QCD calculations are either accurate
enough or available.

2. ERBL region

Gluons share the same symmetry properties as the
valence quark distributions, that is they are symmetric
around x = 0. Therefore the property of their form factor
integration over x is used in a similar way to obtain the
behavior in the ERBL region. Notice that for the gluon
GPDs are Hg(x, 0, 0) = xg(x), therefore the form factor
integrals of the gluon GPDs correspond to the second
Mellin moments of the energy momentum tensor form
factors.

The analytic expressions in the unpolarized gluon sec-
tor are given by,

Hg(X, ζ, t) = aHX
2 − aH ζX +H(ζ, t)

(81)

Eg(X, ζ, t) = aEX
2 − aE ζX + E(ζ, t)

(82)

The values of the parameters are listed in Section IV.

D. Forward limit, ζ = 0 and t = 0

The limits: (1) ζ = 0, t 6= 0; (2) ζ = 0, t = 0, represent
important physical cases (note that in this case, X = x).
The former is needed to perform Fourier transforms in
the transverse plane [41], while (2) gives the connection
to PDFs, namely Hq(x, 0, 0) ≡ fq1 (x), Hg(x, 0, 0) ≡ xg(x)

H̃q ≡ gq1(x), H̃g ≡ ∆x∆g(x) (Section II A 1. Moreover,
the GPDs Hq,g(X, 0, 0), Eq,g(X, 0, 0) define the angular
momentum sum rule, Eq.(21) [1].

For valence and sea quarks the parametric expressions
simplify to,

fq1 (x) = Nx−α
∫
d2k⊥

[
(m+Mx)2 + k2

⊥
]

(1− x)3

[(1− x)M(x)− k2
⊥]

4 (83)

Eq(x) = Nxα
∫
d2k⊥

2M (m+Mx) (1− x)4

[(1− x)M(x)− k2
⊥]

4 (84)

gq1(x) = Nxα
∫
d2k⊥

[
(m+Mx)2 − k2

⊥
]

(1− x)3

[(1− x)M(x)− k2
⊥]

4 (85)

Ẽq(x) =
NπM2

M(x)
x−α (1− x)3

[ 1

3
− 4

5

(M +mx)(M2(1− 2x)−M2
X +M2

Λ)

MM(x)(1− x)

]
(86)

where M defined in Eq.(52c), having dimensions of M2,
contains the parameters, m,MX ,MΛ. The total number
of parameters per GPD flavor is therefore, five, namely,

m,MX ,MΛ,N , α.

For the gluon GPDs we have,

xg(x) = x−αN
∫
d2k⊥(1− x)2 [x2((1− x)M −MX)2 + (1 + (1− x)2)k2

⊥]

(xM2
X + (1− x)M2

Λ − x(1− x)M2 + k2
⊥)4

(87)

Eg = x−αN
∫
d2k⊥(1− x)4 −2Mx((1− x)M −MX)

(xM2
X + (1− x)M2

Λ − x(1− x)M2 + k2
⊥)4

(88)

x∆g(x) = x−αN
∫
d2k⊥(1− x)2 [x2((1− x)M −MX)2 + (1− (1−X)2)k2

⊥]

(xM2
X + (1− x)M2

Λ −X(1−X)M2 + k2
⊥)4

(89)

Ẽg = x−αN
∫
d2k⊥(1− x)3 [8M((1− x)2M −MX)k2

⊥]

(xM2
X + (1− x)M2

Λ − x(1− x)M2 + k2
⊥)3

, (90)

Notice that the integrals in d2k⊥ defining Ẽ in Eqs.(57,78) do not diverge for ζ → 0, since the terms
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in the numerator also go to zero, thus canceling the di-
vergence. This can be seen by inspecting the helicity
amplitude substructure shown in Appendix B, where one
has,

A++,−+ +A−+,++ |ζ=0= 0,

leading to limζ→0 Ẽq,g → constant,.

IV. PDF FIT PARAMETERS

We present our fit parameters for: H (uv, dv, g, ū, d̄)

in Table I; E (uv, dv, g), in II; H̃, and Ẽ (uv, dv) in Table

III. A fully quantitative fit, constrained by either data or
lattice QCD calculations is presently not attainable for
the GPD E in the antiquark sector, and for the helicity
GPDs for antiquarks and gluons.

Parameters Huv Hdv Hg Hu Hd

m (GeV) 0.420 0.275 - 0.380 0.300

MX (GeV) 0.604 0.913 0.726 3.250 2.105

MΛ (GeV) 1.018 0.860 0.979 1.372 1.495

α 0.210 0.0317 -0.622 1.144 1.125

α′ 2.448 ± 0.0885 2.209 ± 0.156 2.000 ± 0.10 0.100 ± 0.060 0.125 ± 0.023

p 0.620 ± 0.0725 0.658 ± 0.257 2.000 ± 0.05 0.100 ± 0.025 0.120 ± 0.05

N 2.043 1.570 1.467 ± 0.228 1.206 ± 0.008 1.230 ± 0.082

a 2000 1000 1000 2000 1000

TABLE I: Parameters for Huv , Hdv , Hg, Hū, Hd̄. The valence quark GPD parameters are determined at an initial scale of
Q2
o = 0.1 GeV2. The gluon and antiquark GPDs are determined at the scale Q2

o = 0.58 GeV2. All parameters, as well as the
fitting procedure are described in the text.

Parameters Euv Edv Eg

m (GeV) 0.420 0.275 n/a

MX (GeV) 0.604 0.913 0.490

MΛ (GeV) 1.018 0.860 0.485

α 0.210 0.0317 -0.622

α′ 2.835 ± 0.146 1.281 ± 3.176 0.000 ± 1.212

p 0.969 ± 0.3355 0.726 ± 1.543 0.000 ± 1.197

N 1.803 -2.780 0.034 ± 0.05

TABLE II: Parameters for Euv , Edv , Eg, Hū, Hd̄. The valence quark GPD parameters are determined at an initial scale of
Q2
o = 0.1 GeV2. The gluon and antiquark GPDs are determined at the scale Q2

o = 0.58 GeV2. All parameters, as well as the
fitting procedure are described in the text.

All parameters are used to evaluate directly the forms
given in Section III, where the kT integration limits are
taken as [0, 5] GeV.

Our analysis is valid in the kinematic region of 10−4 <
(X, ζ) < 0.85, 1 < Q2 < 100 GeV2, i.e. in the multi-
GeV region accessible at present and currently planned
facilities, and −t < Q2.

A few comments are in order:

– The initial scale, Q2
o, is a fitted parameter. Antiquarks

and gluons are fitted at a higher scale than valence quarks
according to the physical picture where at an initial low
scale only valence quarks are present, while gluons and
sea quarks (quark-antiquark pairs) are resolved as inde-
pendent degrees of freedom as the scale increases. Sea
quarks and gluons undergo perturbative evolution be-
yond their initial scale and generate additional gluon and
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Parameters H̃uv H̃dv Ẽuv Ẽdv

m (GeV) 2.624 2.603 2.624 2.603

MX (GeV) 0.474 0.704 0.474 0.704

MΛ (GeV) 0.971 0.878 0.971 0.878

α 0.219 0.0348 0.219 0.0348.

α′ 1.543 ± 0.296 1.298 ± 0.245 5.130 ± 0.101 3.385 ± 0.145

p 0.346 ± 0.248 0.974 ± 0.358 3.507 ± 0.054 2.326 ± 0.137

N 0.0504 -0.0262 1.074 -0.966

a 2000 1000 2000 1000

TABLE III: Parameters for H̃q and Ẽq where q ∈ {uv, dv}. All parameters are described in the text.

sea quarks dynamically through gluon bremmstrahlung,
Section IV B.

– DGLAP region: our fit is recursive in that we first fit-
ted the mass parameters m (quark), MX (spectator), MΛ

(dipole), the Regge parameter α, as well as the normal-
ization N , to the forward limit, i.e. setting t = ζ = 0,
and using the definitions from Section II A 1. The er-
ror on these parameters can be evaluated relative to the
PDF parametric forms for the valence, antiquark and
gluon distributions in [32], thus not directly using exper-
imental data. Because of this, in Refs.[20, 42] we did
not quote these errors. The error on the valence quarks
parametrization is determined entirely by the form factor
fit. For sea quarks and gluons it is given by the error from
the fit to the gluon form factors, in addition to the error
on the normalization N , as we explain in what follows.

– DGLAP region: the parameters α′, p, were fitted subse-
quently, by keeping the previous set of parameters fixed,
switching on the t dependence, and calculating the inte-
grals for the various form factors (Eqs.(13,14,1516,19,20).
For the quark sector we used flavor separated nucleon
form factor data [38], and lattice results from [26] (see
also [20]). In the gluon sector we used the results from
[23].

– DGLAP region: the sum of the quark and spectator
masses obeys the constraint, m+MX > M guaranteeing
that the system is bound.

– DGLAP region: the values of α are not directly related
to the Regge predictions for PDFs because the spectator
functional form also contributes to the slope at low X
(this point is described in detail in Ref.[20].

– ERBL region: the parameter a is the only free-varying
one in our present parametric form for the ERBL region.
The choice of having only one fixable parameter is moti-
vated by the present scarcity of data. Our parametriza-
tion can be easily extended to a more flexible form than
the one presented here, including an enlarged set of pa-
rameters for the ERBL region, as more abundant and
precise data from deeply virtual exclusive processes be-
come available in the future.

A. Fitting procedure

Following the method introduced in [17–20], we adopt
the flexible parameteric forms given in Section III and
let the experimental data on deep inelastic scattering re-
actions and on the nucleon elastic form factors guide the
shape of the parameterization as closely as possible, con-
sistently with the various constraints using elastic scat-
tering and DIS experimental data, and information from
lattice QCD calculations whenever applicable:

• Forward limit (Section II A 1) ⇒ DIS data

• Polynomiality (Section II A 2 and Fig.2) ⇒ elastic
scattering data [38], lattice QCD [23, 26].

• Positivity (Section II A 3)

• Symmetry for x→ −x (Section II B).

The fit results in the valence quark sector, namely for

Huv,dv , Euv,dv , H̃uv,dv , Ẽuv,dv were already performed
in Ref.[20]. Nevertheless, for completeness, we present
the values of the parameters in the first two columns of
Tables I, II, and III alongside the new results derived in
this paper for gluons and antiquarks.

In the gluon sector we first perform a fit to the gluon
PDF at t = 0. Notice, however, that the expression
given in Eq.(87) has to be evolved in perturbative QCD
to the Q2 of the data/lattice results. Standard fitting
procedures are, therefore, cumbersome. To overcome this
issue, for a practical fit, we devised an algorithm that
produces a root mean square error (RMSE) based on a
given number of combinations of parameter values vary-
ing within specific ranges for each parameter. The latter
form an “envelope” of gluon GPDs. After each iteration
of the algorithm, the distance between each subsequent
parameter combination decreases according to,

2× initial value of parameter

(# of combinations )/(# of parameters)

whereby the algorithm is iterated using the combina-
tion of parameter values that yields the lowest RMSE
from the previous step. By implementing a multi-linear



16

FIG. 8: First moment of the gluon GPD Hg versus the various
forward limit parameters whose functional form is given in
Eq.(75) where the distribution is evolved to a final Q2 of 4
GeV2. The stars on the plots correspond to the parameters
values given in Table I.

interpolation, one can largely increase the number of tri-
als to better constrain the range of parameters that re-
sult in a favorable fit to the data. An example of the
spread of the various parameter values for the moment∫
dxHg(x, 0, 0) = 〈xg〉, is given in Figure 8, while the

spread in the Q2 dependence of 〈xg〉, obtained using the
envelope GPDs is shown in Figure 9. The error on the
normalization parameter is defined such that the width
of the envelope is the size of the error given in [32] (we
choose this parametrization because our current fit is
done at Leading Order, LO in perturbative QCD). There-
fore, the errors on the parametrization in [32] are used
as a constraint on the errors of our distribution.

Once the parameters defining the x dependence,
MX ,MΛ, α,N are determined, we find the t-dependent
parameters of the gluons, α′ and p, by recursively fitting
the integral of Hg, Eq.(19), to lattice QCD data at the

scale Q2 = 4 GeV2.
To fit the antiquark sector we would need flavor sep-

arated lattice QCD results which are not directly avail-
able at present. Nevertheless, we used our valence quark
model as a means to estimate the values of the ū and d̄
contribution to the form factors. An improved version
of the fit could be readily obtained once flavor separated
lattice results will be available.

We conclude this Section by noting that the initial
scale, Q2

o is also a parameter, to be determined from
fits to the data. In Refs.[17, 18] it was found that in
the valence sector, Q2

o ≈ 0.1 GeV2. This value is consis-
tent with the more recent fits from Ref.[20, 42], and from
the present paper. The fit to the gluon and sea quarks
distributions, however, yields as expected, a larger value
of Q2

o. Samples from the envelope for different Q2
o val-

ues, keeping the rest of the parameters fixed, are shown
in Figure 10. We found that equivalently viable GPD
parametrizations can be obtained for two distinct values

FIG. 9: The first Mellin moment of the gluon GPD Hg as a
function of Q2 evolved using LO pQCD evolution tools.

FIG. 10: Study of the effect of the initial scale of the gluon
GPD Hg. We keep the forward limit parameters MX ,MΛ and
α fixed while varying the initial Q2

o. The red line corresponds
to the physical value of the parametrization Q2

o = 0.58 GeV2

and the blue lines are values of the initial Q2
o in a range of

0.2− 2 GeV2.

of Q2
o. In Tables IV and V we show the parameters for

Q2
o = 0.58 GeV2. In Section V B we show results for the

GPD Eg obtained for a higher value of Q2
o.

B. QCD Evolution

The QCD anomalous dimensions and Wilson coeffi-
cient functions for the off-forward case have been derived
and tested at LO in Refs.[4, 33, 43, 44]. Calculations
of the coefficient functions up to Next-to-Leading-Order
(NLO) can be found in Refs.[8, 9, 45, 46]. Correspond-
ingly one can, in principle, evaluate both the LO and
NLO kernels of the perturbative QCD evolution equa-
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FIG. 11: (Left) GPDs Fq(X, 0, 0) where F ∈ (H,E, H̃, Ẽ) and q ∈ (uv, dv). We show the initial scale valence quark GPD at

Q2
o = 0.1 GeV2, and the evolved GPD at a final scale of Q2 = 4 GeV2. (Right) GPDs Fq(X, 0, t) where F ∈ (H,E, H̃, Ẽ) and

q ∈ (uv, dv). All GPDs are shown at the scale Q2 = 4 GeV2, for a range of momentum transfer values from −t = 0 GeV2

(upper curves) to −t = 1 GeV2 (lowest curves), and ζ = 0.

FIG. 12: We show the GPD Ẽ in the forward limit for the
valence quark distributions and for the gluon distribution
evolved to Q2 = 4 GeV2. The parameters at the initial scale
are described in Table III for the valence quarks and in Table
V for the gluon.

tions [45]. The main issue for evolution beyond LO is
the non holomorphism of GPDs at the crossover point
between the ERBL and DGLAP regions. Numerical cal-
culations have been, therefore, performed computing mo-
ments in the conformal partial wave expansion, the CS
scheme ([47] and references therein). The latter is, how-
ever, not directly connected to the MS scheme which
is preferable to unanbiguosly constrain the GPDs with
forward limit PDFs and to compare with experiment.

For a practical study, the parametrization presented
here implements pQCD evolution of GPDs using LO ker-
nels. This gives a sufficiently accurate description of the
data since the effects from LO vs. NLO GPDs could not
be possibly observed within the current level of experi-

mental precision. For future studies, NLO evolution will
be presented in a separate, dedicated publication.

Our procedure is as follows: (1) GPDs are evolved in
the DGLAP region from Q2

0 to the final Q2, at any given
kinematic bin (ζ, t); (2) the parameters defining the X-
dependent curve in the ERBL region are determined at
the given scale, Q2, to match the GPDs at the crossover
point, X = ζ, while preserving polynomiality. This step
in our procedure implies that evolution in the ERBL re-
gion is smooth, and that it preserves both‘ the symmetry
properties around X = ζ/2, and the shape of the GPDs.
Results illustrating this behavior are plotted in Section
V. The

The structure functions to compare with experiment
are the Compton Form Factors (CFFs), which corre-
spond to convolutions of GPDs with the Wilson coef-
ficient functions (or the hard scattering functions).

This represents, perhaps, the most important differ-
ence with the forward case, where one starts from the
pQCD evolved PDFs depending on xBj and Q2, and con-
siders the convolution in the longitudinal variable with
the Wilson coefficient functions. The latter yields struc-
ture functions which still depend on xBj and Q2 [48].
For GPDs the CFFs are defined by the following convo-

lutions for each quark flavor, q, Fq = (Hq, Eq), and F̃q=
(H̃q Ẽq), and for the gluon, Fg, respectively, as,

Fq(ζ,Q2) = C+(X, ζ,Q2)⊗ Fq(X, ζ,Q2), (91)

F̃q(ζ,Q2) = C−(X, ζ,Q2)⊗ F̃q(X, ζ,Q2), (92)

while for the gluon,

Fg(ζ,Q2) =
αS(Q2)

2π
CMS
g (X, ζ)⊗ Fg(X, ζ,Q2),

(93)
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where the convolutions are given by the integral:

⊗ →
∫ 1

−1+ζ

dX

(1− ζ/2)
,

and we omitted the t dependence for ease of presentation.
The coefficients functions in MS scheme are given by
[8, 9, 45, 46],

C±(X, ζ,Q2) = C±0 (X, ζ) +
αS
2π
CMS
q (X, ζ) (94)

C±0 (X, ζ) =
1

X − ζ − iε
∓ 1

X − iε
(95)

where the expression for CMS
q and CMS

g were given in
Ref.[9]. At variance with PDFs, for GPDs it appears
clearly that even at leading order, the variable X is inte-
grated over, and the observable longitudinal variables is
ζ.

The GPDs entering Eqs.(91),(92) and (93), are ob-
tained by solving the pQCD DGLAP evolution equa-
tions,

∂

∂ lnQ2
Fqv (X, ζ,Q2) =

αS
2π
Pqq

(
X

Z
,
X − ζ
Z − ζ

, αS

)
⊗ Fqv (Z, ζ,Q2) (96)

∂

∂ lnQ2
FΣ(X, ζ,Q2) =

αS
2π

[
Pqq

(
X

Z
,
X − ζ
Z − ζ

, αS

)
⊗ FΣ(Z, ζ,Q2) + 2NfPqg

(
X

Z
,
X − ζ
Z − ζ

, αS

)
⊗ Fg(Z, ζ,Q2)

]
(97)

∂

∂ lnQ2
Fg(X, ζ,Q

2) =
αS
2π

[
Pgq

(
X

Z
,
X − ζ
Z − ζ

, αS

)
⊗ FΣ(Z, ζ,Q2) + Pgg

(
X

Z
,
X − ζ
Z − ζ

, αS

)
⊗ Fg(Z, ζ,Q2)

]
(98)

where the LO kernels were first derived in Ref.[8, 33], and
we defined,

⊗ →
∫ 1

X

dZ

Z
and

X ′

Z ′
=
X − ζ
Z − ζ

.

The definitions and symmetry properties for the flavor
non singlet (NS), Fqv and + distributions, for the flavor
singlet FΣ, and for the gluon, Fg, described in Section
II B, are conserved under evolution.

In summary, putting all together, we find the proton
and neutron CFFs, FN , N = p, n, which can be deter-
mined up to NLO in the coefficient functions by summing
over the Nf active light quark flavors,

FN (ζ, t, Q2) =
∑
q=u,d

(
e2
qFq + e2

q̄Fq̄
)

+ Fg . (99)

Numerical results for evolution are given in Section V.

V. NUMERICAL RESULTS

This Section highlights the effect of various parameters
parameters which control the behavior of GPDs in differ-
ent regions of X, ζ ≈ xBj , t, and Q2. Several plots were
generated to visualize the changes in the different quark
flavor and gluon GPDs, plotted as a function of X, vary-
ing their t, ζ and Q2 dependences. The H and E GPDs
for all quark and gluon components are also summarized
in Fig.7 in Section II.

A. Valence Quark Distributions

The valence quark fits confirm the results of Refs.[19,

20] for the GPDs Hqv , Eqv , and H̃qv (q = u, d). We

added new fit results for the GPD Ẽqv . All results are
summarized in Figures 11, 12 and 13.

Fig. 11 shows the behavior of all four GPDs, Hqv ,

Eqv , H̃qv and Ẽqv as a function of Q2 at (ζ, t) = 0, on
the l.h.s. panels, and as a function of t at ζ = 0 and at
Q2 = 4 GeV2, on the r.h.s. panels, respectively. The
l.h.s. panels show a dramatic effect of Q2 evolution from
the initial scale of Q2

o = 0.1 GeV2 to Q2 = 4 GeV2,
albeit evolution slows down in the multi-GeV region, as
we show later on. The values of t on the r.h.s. panels
range from t = 0 (highest peaked curves), to t = −1
GeV2 (lowest curves).

In Fig. 12 we focus on the GPD Ẽ, calculated for ζ,
t = 0, and Q2 = 4 GeV2, both in the quark sector and
for the gluon (the latter is discussed below).

Fig. 13 shows the effect of pQCD evolution for the

GPDsHqv , Eqv , H̃qv , Ẽqv (q = u, d), plotted as a function
of X (0 < X < 1), for ζ = 0.18, t0 ≡ tmin = −0.03 GeV2

(Eq.8). The different curves in each panel are the GPD
values evolved to Q2 between 1 and 50 GeV2. The yellow
curve which is highest in the DGLAP region and lowest
in the ERBL region corresponds to the lowest value of
Q2 = 1 GeV2; the green curve, which is lowest in DGLAP
and highest in ERBL, corresponds to Q2 = 50 GeV2. We
explain this behavior as follows: (1) Perturbative QCD
for X ≥ 0.2 shifts “strength” from higher X to lower
X, resulting in the depletion shown in the figure from
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FIG. 13: GPDs, Hqv , Eqv , H̃qv , Ẽqv , (q = u, d) evaluated at ζ = 0.18, −t = −tmin = 0.03 GeV2, evolved to Q2 values: 1
(yellow curve), 4 (purple curve), 50 (green curve). The latter cover a range of values from Jlab current kinematic settings to
the EIC.

the low to high values of Q2; (2) because of polynomial-
ity, or the normalization to the nucleon form factors, the
curves at higher Q2 must peak higher in the ERBL re-
gion (the difference between the yellow and green peaks
is noticeable in the figure). Notice how in the pQCD
evolution framework defined in Section IV B, the sym-
metry around X = ζ/2 is conserved. Overall, the effects
of pQCD evolution of GPDs in the range of current and
future experiments, are logarithmic. We, therefore, ex-
pect the Q2 dependence of DVCS type experiments to
be more substantially influenced by the behavior of the
NLO Wilson coefficient function.

Parameters Q2
o = 0.58 GeV2 Q2

o = 0.97 GeV2

MX (GeV) 0.726 1.12

MΛ (GeV) 0.979 1.05

α -0.622 0.005

α′ 2 ± 0.10 0.28 ± 0.10

p 2 ± 0.05 0.17 ± 0.05

N 1.4672 ± 0.228 1.525 ± 0.228

TABLE IV: Parameters for the gluon GPD, Hg for Q2
0 = 0.58

GeV2, and Q2
0 = 0.97 GeV2.

Parameters E(1)
g E(2)

g E(3)
g

Q2
o (GeV2) 0.97 0.97 0.58

MX (GeV) 1.120 0.490 0.490

MΛ (GeV) 1.100 0.485 0.485

α 0.053 -0.622 -0.622

α′ 0.45 ±0.30 0.000 ± 1.221 0.000 ± 1.212

p -0.20 ±0.30 0.000 ± 1.205 0.000 ± 1.197

N 3.970 ± 1.950 0.020 ± 0.0273 0.034 ± 0.050

TABLE V: Parameters for the gluon GPD, Eg. The first

column show parameters for E
(1)
g , obtained with the initial

scale Q2
0 = 0.97 GeV2, and fitted to a dipole form (Eq.(100)).

The second and third columns show parameters evolved from
Q2

0 = 0.97 GeV2 and Q2
0 = 0.58 GeV2, respectively labeled

E
(2)
g , E

(3)
g , and fitted to a constant value. In this case, the

GPD functional form displays a node (see Figure 18).

B. Antiquark and Gluon Distributions

In Fig.14 the GPDs Fq = FqV +Fq̄, (q = u, d), are plot-
ted as a function of X, at Q2 = 4 GeV2, for different val-
ues of ζ and corresponding ranges in t. Similar to Fig.13,
the GPDs with the smallest values of t (t = t0 ≡ tmin,
Eq.(8), are the largest. One can clearly see how the rela-
tive values of the GPDs in the DGLAP region compared
to the ERBL region become increasingly important as −t
increases. Notice that in this case there is no symmetry
constraint around X = ζ/2. This impacts the ERBL re-
gion where we notice that all GPDs, with the exception of

Ẽ, the symmetric, or − component Eq.(37), dominates
at the smallest value of ζ = 0.18. As ζ increases, the
DGLAP region shrinks and, in order to preserve polyno-
miality, the ERBL gradually becomes dominated by the
+, anti-symmetric distribution, Eq.(38). The transition
can be visualized in the figure, proceeding from top to
bottom. This behavior will be altered as Q2 increases
(cf. Fig.13).

Results for the gluon GPDs, Hg and Eg, are shown in
Figures 15, 16 17, 18, and 19.

All parameters were determined similarly to the quark
case, i.e. implementing the procedure described in Sec-
tion IV A for either the distributions in X, or the Mellin
moments as a function of the momentum transfer t. To
determine the error in the t dependent form factors, we
took the size of the RMSE from the GPD envelope in
t to be equivalent to the error on the dipole fit of the
lattice data moments Ag(t) and Bg(t) [23]. As a result,
the fit for the GPDs are consistent with a dipole fit on
the lattice results.

For the dependence on the initial scale parameter we
found two viable sets of values, Q2

o = 0.58 GeV2 and
Q2
o = 0.97 GeV2. The parameters for the two initial

scale values are presented in Table IV for the GPD Hg

and in Table V, for Eg. Both values are in a range which
is higher than the valence quarks scale, according to the
discussion in Section IV, and is also acceptable for per-
turbative evolution. The value that better validates our
physical picture is Q2

o = 0.58 GeV2, displayed in Tables
II, III, since it is closer to the fitted valence quarks value
of 0.1. Nevertheless, we use both values to study the
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FIG. 14: GPDs, H, E, H̃, and Ẽ plotted vs. X, separated into quark contributions u and d (columns), evaluated at different
ζ ≈ xBj values, ζ = 0.18, 0.25, 0.36, 0.45, 0.57 (rows). In each panel we show momentum transfer, −t, values: t0 ≡ tmin, Eq.(8)
(purple lines), 1 GeV2 (red line), and an intermediate value for each ζ, in the interval [t0, 1 GeV2] (yellow line). All panels
correspond to Q2 = 4 GeV2.

various trends for the gluon GPDs as t, ζ and Q2 vary.
Results from both fitted initial scales generate the same
PDF constraint for the GPD Hg, shown in Fig.15 (the
curves in the figure reproduce the LO parametrization
from Ref.[32]).

Figure 16 shows the effect of pQCD evolution in a typ-
ical kinematic bin, xBj ≈ ζ = 0.25, t = −0.4 GeV2,
similarly to what shown in Fig.13 for the valence quarks.
Note that because for gluons we are using a logarithmic
scale, the ERBL region, X < 0.25, is emphasized and
the symmetry of the distribution around X = ζ/2 is no
longer evident. One can see that, similarly to what de-
scribed for the valence quarks, the highest valued curve
in the DGLAP region (X > 0.25) corresponds to the low-
est value of Q2 = 1 GeV2, the effect of evolution moving
strength to lower X values. As a consequence, in order
to satisfy polynomiality, integrating to the gluon form

factor, at Q2 = 1 GeV2, Hg dips to the negative values;
as Q2 increases, the dip decreases, until it changes its
concavity for the highest considered value of Q2 = 50
GeV2. Notice that in this case the form factors, i.e. the
integrated values are not constant but they are also Q2

dependent, however, this dependence is slower.

The fit to Ag(t) (Eq.19), is shown in Figure 17 (upper
panel). Notice that the parametrization fit differs from
the lattice result at t→ 0 (although it is consistent within
errors), because in our case we impose the constraint,
Hg(X, 0, 0) = xg(x), at Q2 = 4 GeV2, from the Alekhin
parametrization [32].
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FIG. 15: Q2 dependence of the GPD Hg(X, 0, 0).

FIG. 16: Q2 dependence of the gluon GPD, Hg from pQCD
evolution equations at LO in the kinematic bin: xBj = 0.25,
−t = 0.4 GeV2, for Q2 = 1 GeV2 (purple), Q2 = 4 GeV2

(yellow), and Q2 = 50 GeV2 (blue). The range in Q2 covers
the kinematics from the present JLab kinematic setting to the
EIC.

1. The GPD Eg

The GPD Eg is a more elusive object, being relatively
lesser known from phenomenology. The largest obstacle
to a clear determination of Eg is that, at variance with
Hg, it lacks a clear constraint from the forward limit (t =
0 and ζ = 0) . However, similarly to Hg, we can make use
of lattice QCD results to constrain the parametric form’s
Mellin moment Eq.(20). The lattice results are shown in
Fig.17, lower panel.

The lattice results are consistent with either a dipole
form,

Bg(t) =
α

(1− t/Λ2)2
, (100)

or a constant value, where the parameters α and the

FIG. 17: (Upper Panel) GPD Hg(X, 0, t) integrated over X at
ζ = 0, fitted to lattice QCD results from Ref.[23] at Q2 = 4
GeV2. Parameters are given in Table IV and described in
the text. (Lower Panel) GPD Eg(X, 0, t) integrated over X
at ζ = 0, fitted to a dipole form (lattice QCD resulkts from
Ref.[23]). Parameters are given in Table V (first column).

dipole mass Λ were found to be α = 0.0978 ± 0.0466
and Λ = −2.5578± 2.0849 GeV.

Bg(t) = 0.075± 0.101.

We denote the dipole GPD parametrization, E
(1)
g . The

GPD fitted to the constant value in t, performed start-
ing from the initial scale, Q2

o = 0.97 GeV2, is denoted

by E
(2)
g ; the one starting at Q2

o = 0.58 GeV2, is denoted

by E
(3)
g . We perform the fit recursively, that is the pa-

rameters determining the behavior of the distribution at
t = 0, specifically MX , α,MΛ and N are fitted first. Sub-
sequently, the moment of the distribution is fitted to the
lattice values t 6= 0. Because the parameters α′ and p
easily reproduce the dipole behavior (see Section IV), we

find that their values for E
(2,3)
g are consistent with zero.

The fit results shown in Fig.17 (lower panel), are for E
(1)
g

at Q2
o = 0.97 GeV2. The values of all parameters with

their error is shown in Table V.
An important distinction between the dipole and con-
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FIG. 18: Left The three parametric forms for Eg(X, 0, 0), described in the text, namely E
(1)
g (top), E

(2)
g (middle) and E

(3)
g

(bottom). E
(1)
g is fitted to a dipole form, whereas E

(2,3)
g are fitted to a constant value in t for the gluon form factor from lattice

QCD using different values of the initial scale Q2
o. Notice the node in E

(2,3)
g . The green lines are evolved starting from the blue

lines evaluated at Q2
o, to Q2 = 4 GeV2 in order to match the lattice QCD values [23]; Right: the t-dependence of the GPDs

E
(1)
g (X, 0, t), E

(2)
g (X, 0, t) and E

(3)
g (X, 0, t). E

(1,2,3)
g (X, 0, 0) is the topmost curve, shown in blue. As t grows to the value of −2

GeV2, it becomes more green in the graph.

FIG. 19: Gluon GPDs for parametrization at an initial Q2
o =

0.97 GeV2 in Tables IV, V for the kinematics Q2 = 4 GeV2,
ζ = 0.25, and t = −0.1 GeV2.

stant value fits is that the latter supports the presence
of a node in Eg. All three parameterizations are shown
in Fig. 18, which illustrates both the evolution in Q2

on the left panels, and the t-dependence of the GPD Eg,

on the r.h.s. panels. Notice that while E
(1)
g displays a

“valence-like” behavior, E
(2)
g and E

(3)
g clearly display a

node in their X dependence. An important consequence
of this behavior is that it impacts the Q2 dependence at

low X. The GPD E
(3)
g is our choice for the the complete

parametric form given in Table II, Section IV.
In Figure 19 we juxtapose the GPDs Hg and Eg

evolved to Q2 = 4 GeV2 for atypical Jlab kinematic bin.

VI. CONCLUSIONS AND OUTLOOK

Measuring GPDs in a wide kinematic range in xBj , t
and Q2, will provide a powerful tool allowing a greater
insight into the internal structure of the nucleon by un-
covering the spatial distribution of its constituent quarks
and gluons, and shedding light onto the origin of its mass
and spin.

A quantitative extraction of GPDs from a global anal-
ysis can be performed in a consistent QCD-parton frame-
work using experimental data from various deeply virtual
exclusive experiments (DVCS, DVMP and theire crossed
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channels), along with constraints from inclusive deep in-
elastic scattering, and from the elastic form factors. We
provide a first scaffolding of such a framework with a
flexible parametrization for all chiral even GPDs in the
valence quark uv, dv, antiquark ū, d̄, and gluon sectors.
These parametrizations can be readily implemented in
theoretical calculations of various derived observables,
codes and event generators to evaluate the Compton
form factors used in Deeply Virtual Compton Scattering
(DVCS) and related experiments.

A further application that we are currently pursuing
includes the computation of Fast Fourier Transforms to
obtain quantitative renderings of partonic transverse spa-
tial distributions. A specific goal of the analysis is to
study the sensitivity to the ranges in t that are necessary
to obtain a meaningful image in the transverse plane.
The availability of a parametrization such as the one pre-
sented here is mandatory since it allows us to tune several
of the GPD parameters to study the impact of features
of the GPD behavior on the Fourier transform. Further-
more, using GPDs in the gluon sector is unprecedented
and it provides an alternative approach complementing
recent studies of diffractive scattering at EIC kinematics
[49]. Our future endeavour will also include a complete
analysis at NLO.

Finally, the envelopes of GPDs obtained by appropri-
ately varying different parameters provide an essential
background for generating pseudo-data which are a fun-
damental input in a separate Machine Learning (ML)
effort [50]. The latter will ultimately provide the first re-
alistic, model independent pictures of the proton at the
femtometer scale.
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Appendix A: Kinematics in symmetric and
asymmetric frames

p ≡
(
p+,

M2

2p+
, 0

)
(A1a)

k ≡
(
Xp+,

M2

2p+
− M2

X + k2
⊥

2(1−X)p+
,k⊥

)
(A1b)

p′ ≡
(

(1− ζ)p+,
M2 + ∆2

⊥
2(1− ζ)P+

,∆⊥

)
(A1c)

k′ ≡
(

(X − ζ)p+,
M2 + ∆2

⊥
2(1− ζ)p+

− M2
X + k2

⊥
2(1−X)p+

,k⊥ −∆⊥

)
(A1d)

In this frame the proton lies on the z-axis. One can
easily translate into the more commonly used symmetric
frame, which uses the (average) sum, P = (p+ p′)/2 and
difference, ∆ = p′− p, of the proton momenta defines as,

P ≡
(
P+,

M2

2P+
, 0

)
(A2a)

∆ ≡
(
ξ (2P+),

t+ ∆2
T

2ξP+
,∆T

)
(A2b)

In this case, the vector P lies along the z-axis and the
coordinates of the initial and final proton and parton are,
respectively given by,

p ≡
(

(1 + ξ)P+,
M2 + ∆2

T /4

(1 + ξ)P+
,
∆T

2

)
(A3a)

k ≡
(

(x+ ξ)P+, k−,kT +
∆T

2

)
, (A3b)

p′ ≡
(

(1− ξ)P+,
M2 + ∆2

T /4

(1− ξ)P+
,−∆T

2

)
(A3c)

k′ ≡
(

(x− ξ)P+, k′−,kT −
∆T

2

)
(A3d)

Appendix B: Helicity Amplitudes Structure of GPDs

GPDs are described in terms of parton-proton helicity
amplitudes [21]. We describe below the detailed structure
of the quark and gluon amplitudes.
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1. Quark Amplitudes

2H(X, ζ, t) = A++,++ +A+−,+− +A−−,−− +A−+,−+ (B1a)

−∆1E(X, ζ, t)

M
= A++,−+ +A+−,−− −A−−,+− −A−+,++ (B1b)

2H̃(X, ζ, t) = A++,++ −A+−,+− +A−−,−− −A−+,−+ (B1c)

ξ
∆1Ẽ(X, ζ, t)

M
= A++,−+ −A+−,−− −A−−,+− +A−+,++ (B1d)

Parity relations give, A−−,−− = A∗++,++, A−+,−+ =
A∗+−,+−, A−−,+− = −A∗++,−+, and A+−,−− =
−A∗−+,++. In the spectator model one has,

AΛ′λ′,Λλ =

∫
d2k⊥φ

q∗
λ′,Λ′(k

′, p′)φλ,Λ(k, p), (B2)

with the following vertex functions (see Fig.1),

φΛ,λ(k, p) = Γ(k)
ū(k, λ)U(p,Λ)

k2 −m2
(B3)

φq∗Λ′λ′(k
′, p′) = Γ(k′)

U(p′,Λ′)u(k′, λ′)

k′ 2 −m2
, (B4)

Notice that we use the same form of coupling for the
scalar and axial vector diquark, but distinguish the two
by allowing for different mass parameters for the u and
d quarks. This ansazt was first introduced in parametric
forms in Ref.[35]. It is justified in our case because the
scalar and axial vector couplings give functional shapes
which are similar to one another, while flexibility is pro-
vided by allowing for the mass parameters to vary. The
proton-quark-diquark vertex function is given by [20],

Γ = gs
k2 −m2

(k2 −M2
Λ)2

, Γ′ = gs
k′2 −m2

(k′2 −M2
Λ)2

(B5a)

leading to,

φ++(k, p) =
1√
X

(m+MX)(1−X)2

[(1−X)M2 − k2
⊥]

2 (B5b)

φ++(k′, p′) =
1√
X ′

(m+MX ′)(1−X ′)2[
(1−X ′)M′2 − k̃2

⊥

]2 (B5c)

φ+−(k, P ) =
1√
X

(k1 − ik2)(1−X)2

[(1−X)M2 − k2
⊥]

2 (B5d)

φ+−(k′, p′) =
1√
X ′

(k̃1 − ik̃2)(1−X ′)2[
(1−X ′)M′2 − k̃2

⊥

]2 , (B5e)

where we used,

ū(k,±)U(p,±) =
1

4
Tr{(/P +M)(1 + γo)(1± γ5γ

3)(k 6+m)}
(B6)

ū(k,±)U(p,∓) =
1

4
Tr{(P 6+M)(1 + γo)(γ1 ± iγ2)(k 6+m)},

(B7)

The denominators from Eq.(B5a) are defined as,

k2 −m2 = XM2 − X

1−X
M2
X −m2 − k2

⊥
1−X

=M2 − k2
⊥

1−X
(B8)

k′ 2 −m2 =
X − ζ
1− ζ

M2 − X − ζ
1−X

M2
X −m2 − 1− ζ

1−X

(
k⊥ −

1−X
1− ζ

∆⊥

)2

=M′2 − k̃2
⊥

1−X ′
. (B9)

The final expressions entering Eq.(47) are,

HMΛ

MX ,m
= N 1− ζ/2

1−X

∫
d2k⊥

[
(m+MX) (m+MX ′) + k2

⊥ − (1−X ′)k⊥ ·∆⊥
]

(1−X)2(1−X ′)2

[(1−X)M(X)2 − k2
⊥]

2
[(1−X ′)M(X ′)2 − k2

⊥ + 2(1−X ′)k⊥ ·∆⊥ − (1−X ′)2∆2
⊥]

2
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+
ζ2

4(1− ζ)
EMΛ

MX ,m
, (B10)

EMΛ

MX ,m
= N 1− ζ/2

1−X

∫
d2k⊥

−2M(1− ζ)

∆2
⊥

[
(M(X −X ′)k⊥ ·∆⊥ − (m+MX) (1−X ′)∆2

⊥
]

(1−X)2(1−X ′)2

[(1−X)M2 − k2
⊥]

2
[(1−X ′)M2 − k2

⊥ + 2(1−X ′)k⊥ ·∆⊥ − (1−X ′)2∆2
⊥]

2

(B11)

H̃MΛ

MX ,m
= N 1− ζ/2

1−X

∫
d2k⊥

[
(m+MX) (m+MX ′)− k2

⊥ + (1−X ′)k⊥ ·∆⊥
]

(1−X)2(1−X ′)2

[(1−X)M2 − k2
⊥]

2
[(1−X ′)M2 − k2

⊥ + 2(1−X ′)k⊥ ·∆⊥ − (1−X ′)2∆2
⊥]

2

+
ζ2

4(1− ζ)
ẼMΛ

MX ,m
(B12)

ẼMΛ

MX ,m
= N 1− ζ/2

1−X

∫
d2k⊥

−4M(1− ζ)

ζ∆2
⊥

[
(2m+M(X +X ′)) k⊥ ·∆⊥ − (m+MX) (1−X ′)∆2

⊥
]

(1−X)2(1−X ′)2

[(1−X)M2 − k2
⊥]

2
[(1−X ′)M2 − k2

⊥ + 2(1−X ′)k⊥ ·∆⊥ − (1−X ′)2∆2
⊥]

2

(B13)

From the expressions above one clearly sees the dependence of the GTMDs on k2
⊥, ∆2

⊥, (k⊥ ·∆⊥).
The integration over the angle φ, namely d2k⊥ = dk⊥k⊥dφ, in Eqs.(B10,B11,B12), can be carried out analytically

thus obtaining the expressions in Section III.

2. Gluon Amplitudes

We define the gluon-proton helicity amplitudes simi-
larly to the quark-proton amplitudes as,

AgΛ′λ′g,Λλg
=

1

P̄+

∫
dz−

2π
eixP̄

+z−〈p′,Λ′|Ogλ′gλg |p,Λ〉
∣∣∣
z+=0

,

(B14)

where the leading twist gluon strength field operators,
Oλ′g=±λg=±, are,

Og++ =
1

2

[
G+iGi

+ − iG+µG̃µ
+
]

(B15)

Og−− =
1

2

[
G+iGi

+ + iG+µG̃µ
+
]

(B16)

Og−+ =
1

2

[
G+1G1+ −G+2G2+ − iG+1G2+ − iG+2G1+

]
(B17)

Og+− =
1

2

[
G+1G1+ −G+2G2+ + iG+1G2+ + iG+2G1+

]
(B18)

with i = 1, 2. By using these operators in Eq.(B14), we
find for the gluon helicity conserving amplitudes,

A++,++ =
√

1− ξ2
(Hg + H̃g

2
− ξ2

1− ξ2

Eg + Ẽg

2

)
A−+,−+ =

√
1− ξ2

(Hg − H̃g

2
− ξ2

1− ξ2

Eg − Ẽg

2

)

A++,−+ = −e−iφ
√
t0 − t
2M

(Eg − ξẼg
2

)
A−+,++ = eiφ

√
t0 − t
2M

(Eg + ξẼg

2

)
, (B19)

The amplitudes observe the following parity relations,

Ag−Λ′−λ′g,−Λ−λg = (−1)Λ−λg−Λ′+λ′gAg ∗Λ′λ′g,Λλg
. (B20)

The gluon-proton helicity amplitude can be written as,

AΛ′λ′g,Λλg
=

∫
d2k⊥
1−X

∑
ΛX

φ∗ΛX
λ′gΛ′ (k

′, p′)φΛX
λgΛ(k, p),

(B21)

where we defined the initial and final LC vertex functions,
φgΛXλgΛ(k, p), and φg∗ΛXλ′gΛ′(k

′, p′), respectively as,

φΛX
λgΛ(k, p) = Γ(k)

ŪΛX (p− k)UΛ(p)

k2 −m2
g

/ε
∗
λg

(k)

(B22)

φ∗ΛX
λ′gΛ′ (k

′, p′) = Γ(k)
ŪΛ′(p

′)UΛX (p′ − k′)
k′2 −m2

g

/ελ′g
(k′)

(B23)

where the gluon mass, mg, is present because the gluons
are off-shell. Analogous to the quark case the coupling
at the gluon-proton-octet-proton vertex, Γ(k) contains a
form factor as in the quark-diquark spectator case,

Γ(k) ≡ g
k2 −m2

g

(k2 −M2
Λ)2

, (B24)
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so that k2 −m2
g, cancels out. This coupling is used here

as an ultraviolet regulator in kT ; MΛ sets the mass scale
for the form factor.

By using,/PX +MX =
∑
ΛX

UΛX (PX)ŪΛX (PX), and

∫
dk−P+ i

P 2
X −M2

X

f(k−, . . .) =
π

(1−X)
f(. . .) |P 2

X=M2
X

(B25)

for the spectator propagator we find,

AΛ′λ′g,Λλg
(X, ζ, t) =

∫
d2k⊥
1−X

Ū(p′,Λ′) [γν(6P +MX)γµ]U(P,Λ)Γ(k′)Γ(k)ε∗ νλg (k′)εµλg (k) (B26)

The gluon polarizations are defined as,

ε∗ νλg (k) = 1√
2
(0;−λg, i, 0) (B27a)

ε∗ νλ′g (k′) = 1√
2
(0;−λ′g, i, 0) . (B27b)

Notice that the initial (k, λg), and final (k′, λ′g) gluon

polarizations are both taken with the particles momenta
aligned along the z-axis, despite the final gluon is rotated
the angle ˆP∆. If we rotate the gluon this introduces a
higher order in kT /P

+ correction.

The specific helicity combinations read,

A++,++ = N
√

1− ζ
∫
d2k⊥

~k⊥ · ~̃k⊥ + [(1−X)M −MX ][(1−X ′)M −MX ]XX ′

(k2 −M2
Λ)2(k′2 −M2

Λ)2
(B28)

A−+,−+ = N
√

1− ζ
∫
d2k⊥

~k⊥ · ~̃k⊥(1−X)(1−X ′)
(k2 −M2

Λ)2(k′2 −M2
Λ)2

(B29)

A−+,++ = N
√

1− ζ
∫
d2k⊥

(1−X ′)[(1−X)M −MX ](k̃1 + ik̃2)

X ′ (k2 −M2
Λ)2(k′2 −M2

Λ)2
(B30)

A++,−+ = N
√

1− ζ
∫
d2k⊥

(1−X)[(1−X ′)M −MX ](k1 − ik2)

X (k2 −M2
Λ)2(k′2 −M2

Λ)2
(B31)

where the normalization factor, N , absorbs all common

factors (π, gs, constants). The components of ~k⊥ are de-

fined relative to the direction of ~∆⊥, so that the integral

over angles can be specified by choosing ~∆⊥ = ∆⊥x̂ or
simply ∆̂⊥.

Inverting Eqs.(B19) we find the expressions in Section
III C.

Appendix C: Summary of GPD parametrizations

We present a summary of the parametrization for the

GPDs, Hqv , Hq̄, Hg, Eqv , Eg, H̃qv , Ẽqv , that can be easily

implemented in numerical calculations. Note that the
GPD Hq = Hqv +Hq̄ is obtained as the sum of Eq.(C1).
Eq.(C2). The parameters for each component can be
read off Tables I, II, and III. The given parametric forms
need to be perturbatively evolved to the Q2 of the data.
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Parametric form for H(X, ζ, t):

Hqv (X, ζ, t) =



HMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t), Eq.(54) ζ ≤ X ≤ 1

a−X2 − a− ζX +H(ζ, t), Eq.(62) 0 ≤ X < ζ

0 −1 + ζ ≤ X < 0

(C1)

H q̄(X, ζ, t) =



0 ζ ≤ X ≤ 1

a+X3 − 3
2a

+ζX2 + cX + d, Eq.(72) 0 ≤ X < ζ

HMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t), Eq.(68) −1 + ζ ≤ X < 0

(C2)

Hg(X, ζ, t) =



HMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t), Eq.(75) ζ ≤ X ≤ 1

agX
2 − ag ζX +H(ζ, t), Eq.(81) 0 ≤ X < ζ

0 −1 + ζ ≤ X < 0

(C3)

Parametric form for E(X, ζ, t):

Eqv (X, ζ, t) =



EMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t), Eq.(55) 0 ≤ X < ζ

aEX
2 − aE ζX + E(ζ, t), Eq.(63) ζ ≤ X ≤ 1

0 −1 + ζ ≤ X < 0

(C4)

Eg(X, ζ, t) =



EMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t), Eq.(80) 0 ≤ X < ζ

aEX
2 − aE ζX + E(ζ, t), Eq.(82) ζ ≤ X ≤ 1

0 −1 + ζ ≤ X < 0

(C5)

Parametric form for H̃(X, ζ, t):

H̃qv (X, ζ, t) =



H̃MΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t), Eq.(56) ζ ≤ X ≤ 1

a+X3 − 3
2a

+ζX2 + cX + d, Eq.(73) 0 ≤ X < ζ

0 −1 + ζ ≤ X < 0

(C6)

Parametric form for Ẽ(X, ζ, t):

Ẽqv (X, ζ, t) =



ẼMΛ

MX ,m
(X, ζ, t)Rα,α

′

p (X, t), Eq.(57) ζ ≤ X ≤ 1

a+X3 − 3
2a

+ζX2 + cX + d, Eq.(74) 0 ≤ X < ζ

0 −1 + ζ ≤ X < 0

(C7)
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